箱线图
简介
箱线图(Box plot) (又称盒形图、箱图、盒子图)
简单箱线图图形
pic-info">
简单箱线图由五部分组成,分别是最小值、中位数、最大值和两个四分位数。目录
1 箱线图概述
2 箱线图的绘制步骤
3 箱线图的功能
4 箱线图应用举例绘制步骤
1、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的全距稍长。
2、画一个矩形盒,两端边的位置分别对应数据批的上下四分位数(Q1和Q3)。在矩形盒内部中位数(Xm)位置画一条线段为中位线。
3、在Q3+1.5IQR(四分位距)和Q1-1.5IQR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限;在F+3IQR和F-3IQR处画两条线段,称其为外限。处于内限以外位置的点表示的数据都是异常值,其中在内限与外限之间的异常值为温和的异常值(mild outliers),在外限以外的为极端的异常值(extreme outliers)。
4、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的分布区间。
5、用“〇”标出温和的异常值,用“*”标出极端的异常值。相同值的数据点并列标出在同一数据线位置上,不同值的数据点标在不同数据线位置上。至此一批数据的箱线图便绘出了。统计软件绘制的箱线图一般没有标出内限和外限。功能
箱线图作为描述统计的工具之一,其功能有独特之处,主要有以下几点:
1.直观明了地识别数据批中的异常值
一批数据中的异常值值得关注,忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会带来不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。箱线图为我们提供了识别异常值的一个标准:异常值被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的值。虽然这种标准有点任意性,但它来源于经验判断,经验表明它在处理需要特别注意的数据方面表现不错。这与识别异常值的经典方法有些不同。众所周知,基于正态分布的3σ法则或z分数方法是以假定数据服从正态分布为前提的,但实际数据往往并不严格服从正态分布。它们判断异常值的标准是以计算数据批的均值和标准差为基础的,而均值和标准差的耐抗性极小,异常值本身会对它们产生较大影响,这样产生的异常值个数不会多于总数0.7%。显然,应用这种方法于非正态分布数据中判断异常值,其有效性是有限的。箱线图的绘制依靠实际数据,不需要事先假定数据服从特定的分布形式,没有对数据作任何限制性要求,它只是真实直观地表现数据形状的本来面貌;另一方面,箱线图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响,箱线图识别异常值的结果比较客观。由此可见,箱线图在识别异常值方面有一定的优越性。
2.利用箱线图判断数据批的偏态和尾重
比较标准正态分布、不同自由度的t分布和非对称分布数据的箱线图的特征,可以发现:对于标准正态分布的大样本,只有 0.7%的值是异常值,中位数位于上下四分位数的中央,箱线图的方盒关于中位线对称。选取不同自由度的t分布的大样本,代表对称重尾分布,当t分布的自由度越小,尾部越重,就有越大的概率观察到异常值。以卡方分布作为非对称分布的例子进行分析,发现当卡方分布的自由度越小,异常值出现于一侧的概率越大,中位数也越偏离上下四分位数的中心位置,分布偏态性越强。异常值集中在较小值一侧,则分布呈现左偏态;;异常值集中在较大值一侧,则分布呈现右偏态。下表列出了几种分布的样本数据箱线图的特征(样本数据由SAS的随机数生成函数自动生成),验证了上述规律。这个规律揭示了数据批分布偏态和尾重的部分信息,尽管它们不能给出偏态和尾重程度的精确度量,但可作为我们粗略估计的依据。
3.利用箱线图比较几批数据的形状
同一数轴上,几批数据的箱线图并行排列,几批数据的中位数、尾长、异常值、分布区间等形状信息便昭然若揭。在一批数据中,哪几个数据点出类拔萃,哪些数据点表现不及一般,这些数据点放在同类其它群体中处于什么位置,可以通过比较各箱线图的异常值看出。各批数据的四分位距大小,正常值的分布是集中还是分散,观察各方盒和线段的长短便可明了。每批数据分布的偏态如何,分析中位线和异常值的位置也可估计出来。还有一些箱线图的变种,使数据批间的比较更加直观明白。例如有一种可变宽度的箱线图,使箱的宽度正比于批量的平方根,从而使批量大的数据批有面积大的箱,面积大的箱有适当的视觉效果。如果对同类群体的几批数据的箱线图进行比较,分析评价,便是常模参照解释方法的可视图示;如果把受测者数据批的箱线图与外在效标数据批的箱线图比较分析,便是效标参照解释的可视图示。箱线图结合这些分析方法用于质量管理、人事测评、探索性数据分析等统计分析活动中去,有助于分析过程的简便快捷,其作用显而易见。应用举例
现有某直销中心30名员工的工资测算数据两批,第一批为工资调整前的数据,第二批为工资调整后的数据,绘出它们的箱线图(如下图),进行比较,可以很容易地得出:工资调整前,总体水平在752元左右,四分位距为307.5,没有异常值。经过调整后,箱线图显示,第2、29、10、24、27号为温和的异常值,第26、30、28号为极端的异常值。为什么会出现异常值呢?经过进一步分析知道,第2、29、10、24号员工由于技能强、工龄长、积累贡献大、表现较好,劳苦功高,理应得到较高的报酬;第27、26、30、28号职工则因为技能偏低、工龄短、积累贡献小且表现较差,得到的工资较低,甚至连一般水平也难以达到。这体现了工资调整的奖优罚劣原则。另外,调整后工资总体水平比调整前高出270元,四分位距为106,工资分布比调整前更加集中,在合适的范围内既拉开了差距,又不至于差距太悬殊,还针对特殊情况进行了特殊处理。这种工资分布具有激励作用,可以说工资调整达到预期目的。
箱线图美中不足之处在于它不能提供关于数据分布偏态和尾重程度的精确度量;对于批量较大的数据批,箱线图反映的形状信息更加模糊;用中位数代表总体平均水平有一定的局限性等等。所以,应用箱线图最好结合其它描述统计工具如均值、标准差、偏度、分布函数等来描述数据批的分布形状。
热门专栏
热门词条
应收账款
区域货币
区间估计
金融危机
资本成本
CPI(Consumer Price Index)
汇率
资产
经济
美元
单向定单
租赁期
外汇通
服务
外汇佣金
SME
ISO
认可
增量成本
什一税
CFO
MIT
加工
销售
MG金融集团
股价反弹
抽签偿还
股利收入
技术
空头陷阱
资本
REF
市场
中国股市
中小企业
备付金率
美国
两会
价格
吊空
指数
股灾
葡萄牙币
调至市价
pt
清算
电子汇兑
税粮
下降三角形
外汇
FDI
Writer
银行
投资
管理
阴烛
MACD
width
冲账
Theta
短期同业拆借
货币
peg
外汇交易法
金融中介理论
企业
艾略特波段理论的含义
消费发展战略
黄金
巴塞尔资本协议
贴现现金流
联系汇率制度
拔档
美国贝勒大学
产品
汇差清算率
延期付款汇票
短期国际商业贷款
Exposure
计期汇票
集中竞价
金融
标准普尔(S&P)
公司
不完全竞争市场理论 (金融)
正利差
分期付款汇票
软通货
出口物价指数
选择权买方
资金
百分比回撤
无记名汇票最低报价戴维·凯特标准·普尔 500指数抵押品持平德国工业产值德国消费者物价指数成本协同效益
股票
非农就业人口
交易
道琼斯公用事业平均指数
持平
指示汇票
产品竞争力
财务指标 盈利能力比率
德国伊弗研究所景气调查
外汇实盘交易方式
外汇实盘交易指令
国际收支差额