显著性水平

什么是显著性水平
  假设检验是围绕对原假设内容的审定而展开的。如果原假设正确我们接受了(同时也就拒绝了备择假设),或原假设错误我们拒绝了(同时也就接受了备择假设),这表明我们作出了正确的决定。但是,由于假设检验是根据样本提供的信息进行推断的,也就有犯错误的可能。有这样一种情况,原假设正确,而我们却把它当成错误的加以拒绝。犯这种错误的概率用α表示,统计上把α称为假设检验中的显著性水平,,也就是决策中所面临的风险
  显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率风险。它是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=0.05或α=0.01。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。
  显著性水平代表的意义是在一次试验中小概率事物发生的可能性大小。
显著性水平的理解
  显著性水平是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。检验中,依据显著性水平大小把概率划分为二个区间,小于给定标准的概率区间称为拒绝区间,大于这个标准则为接受区间。事件属于接受区间,原假设成立而无显著性差异;事件属于拒绝区间,拒绝原假设而认为有显著性差异。对显著水平的理解必须把握以下二点:
  1、显著性水平不是一个固定不变的数值,依据拒绝区间所可能承担的风险来决定。
  2、统计上所讲的显著性与实际生活工作中的显著性是不一样的。