不完全信息静态博弈

概述

完全信息静态博弈,是指至少某一个局中人不完全了解另一个局中人的特征,即不知道某一参与人的真实类型,但是知道每一种类型的出现的概率

古巴导弹危机
二战后,美国和苏联两个超级大国形成了对峙,组成了两大敌对阵营。1962年苏联偷偷地将导弹运送到古巴对付美国,但却被美国的侦察机发现,于是美国决定对古巴进行军事封锁,美苏之间的战争一触即发。面对美国的反应,苏联面临着是将导弹撤回国还是坚持部署在古巴的选择。而对于美国,则面临着是挑起战争还是容忍苏联的挑衅行为的选择。博弈矩阵如下:
wspan="2" colspan="2">  美国
进攻 撤退
wspan="3">苏联
进攻 Va,Vb 6,-6
撤退 -6,6 -3,-3

在这个博弈中,假设Va,Vb∈{1,-4},如果双方都选择进攻,则会发生一场战争。对每一方而言,如果决策者属于鹰派,则会选择进攻,其支付为1;如果决策者属于鸽派,则可能会选择撤退,其支付为-4。每一方都知道自己属于哪一派,但这一信息是自己的隐私,所以说这是一个完全信息博弈问题。又因为双方的行动有先后顺序,但是后行动者美国并不知道先行动者苏联所采取的行动,只能通过所掌握的有限信息进行归纳,从而预测出对方可能会采取何种策略,因此它也是一个静态博弈

美国对苏联的行动考虑对策时,可以选择的策略有多种,从默许到温和的制裁直至全面对抗,事实上,它选择了最强烈的反应并取得了成功。美国这样推理:如果苏联采取进攻,那么当Va=1时,他的最好反应是进攻;而当Va=-4时的最好反应是撤退。如果苏联选择撤退,那么无论他的私人信息是什么,他的最好反应都是进攻。此外,根据美国情报部门所掌握的信息和对对手苏联决策层的估计,即赫鲁晓夫的强硬姿态背后苏联内部对此各种态度的冲突和综合,苏联的实力、赫鲁晓夫执行其意旨的能力等估计的基础上,美国当局做出了正确的反应。虽然苏联也可以这样推理,但是赫鲁晓夫错误地估计了对方的反应,认为美国会容忍这种后果,而事实相反。所以说,这是一种不完全归纳推理,即从若干个个别性前提推出一个特称结论的推理。 [1]

在假定局中人拥有私人信息的情况下,其他局中人对特定局中人的支付函数类型是不清楚的。如果一些局中人不知道另一些局中人的支付函数,或支付函数不是共同知识,局中人就不知道他在与谁博弈博弈的规则是没有定义的。因而在1967年以前,博弈论专家认为此时博弈的结构特征是不确定的,无法进行分析。海萨尼提出了一种处理完全信息博弈的方法,即引入一个虚拟的局中人——“自然”。自然首先行动,它决定每个局中人的特征。每个局中人知道自己的特征,但不知道别的局中人特征。这种方法将完全信息静态博弈变成一个两阶段动态博弈,第一个阶段是自然N的行动选择,第二阶段是除N外的局中人的静态博弈。这种转换被称为“海萨尼转换”,这个转换把“完全信息”转变成为完全但不完美信息,从而可以用分析完全信息博弈的方法进行分析。

相关条目