上校赛局
概述
此赛局原本的述叙是,有一个上校被要求找到在 N 个战场里士兵的最佳分布,其条件为:
每一个战场,分派较多士兵的一方会胜利; 双方都不知道对方在每个战场上分派了多少的士兵; 赢了较多战场的一方是最后的赢家。
例子
考虑一个赛局,两个玩家各自以不递减的顺序写下三个正整数,且这三个正整数相加会等于一特定的数 S 。接着,这两位玩家分别秀出他们的所写,并比较相应的数字。有三个数字中有两个大于对方的人即赢得此一赛局。
对 S = 6 ,只可能有三种可能的选择: (2, 2, 2) 、 (1, 2, 3) 和 (1, 1, 4) 。很容易便可看出:
(1, 1, 4) 对 (1, 2, 3) 平手
(1, 2, 3) 对 (2, 2, 2) 平手
(2, 2, 2) 胜过 (1, 1, 4)
这表示其最佳策略(纳什均衡点)为 (2, 2, 2) 。
对更大的 S ,游戏会渐渐变得更难分析。对 S = 12 ,可证明 (2, 4, 6) 是最佳策略;但对 S > 12 ,则不存在最佳的决定策略。对 S = 13 ,以机率各 1/3 来选定 (3, 5, 5) 、 (3, 3, 7) 和 (1, 5, 7) 才是最佳机率策略。[1]
真实例子
在最近的一篇论文里,2000年美国总统选举即被模拟成一个上校赛局。这篇论文主张,高尔可以运用策略来赢得选举,但这个策略在事先是不能辨知的。
热门专栏
热门词条
应收账款
区域货币
区间估计
金融危机
资本成本
CPI(Consumer Price Index)
汇率
资产
经济
美元
单向定单
租赁期
外汇通
服务
外汇佣金
SME
ISO
认可
增量成本
什一税
CFO
MIT
加工
销售
MG金融集团
股价反弹
抽签偿还
股利收入
技术
空头陷阱
资本
REF
市场
中国股市
中小企业
备付金率
美国
两会
价格
吊空
指数
股灾
葡萄牙币
调至市价
pt
清算
电子汇兑
税粮
下降三角形
外汇
FDI
Writer
银行
投资
管理
阴烛
MACD
width
冲账
Theta
短期同业拆借
货币
peg
外汇交易法
金融中介理论
企业
艾略特波段理论的含义
消费发展战略
黄金
巴塞尔资本协议
贴现现金流
联系汇率制度
拔档
美国贝勒大学
产品
汇差清算率
延期付款汇票
短期国际商业贷款
计期汇票
Exposure
集中竞价
金融
标准普尔(S&P)
不完全竞争市场理论 (金融)
公司
正利差
分期付款汇票
软通货
出口物价指数
选择权买方
资金
百分比回撤
无记名汇票最低报价戴维·凯特标准·普尔 500指数抵押品持平德国工业产值德国消费者物价指数成本协同效益
股票
非农就业人口
交易
道琼斯公用事业平均指数
持平
指示汇票
产品竞争力
财务指标 盈利能力比率
德国伊弗研究所景气调查
外汇实盘交易方式
外汇实盘交易指令
国际收支差额